Guidelines for
Acoustical Performance
of Standard Steel Doors
and Frames
Guidelines for Acoustical Performance of Standard Steel Doors and Frames

1 General

1.1 Scope
This document shall provide guidelines for the specifying, installing, and adjusting of standard steel doors and frames in applications where sound control is a consideration.

1.2 Definitions

1.2.1 Sound Transmission Class
A single number rating that indicates the sound transmission loss over a defined range of frequencies of a door assembly between adjacent closed rooms, abbreviated STC. Higher values equate to better sound reduction performance.

1.2.2 Outdoor-Indoor Transmission Class
A single number rating used to compare door assemblies when subjected to exterior sounds, such as ground or air transportation noise, is abbreviated OITC.

1.2.3 Sound transmission loss – TL
The reduction in sound level at specific frequency levels when sound passes through a door assembly.

1.2.4 Frequency
The number of cycles per second of a sound wave, measured in units of Hertz and abbreviated Hz.

1.2.5 Decibel – dB
A unit used to express the intensity of a sound wave, equal to 20 times the common logarithm of the ratio of the pressure produced by the sound wave to a reference pressure, usually 0.0002 microbar.

1.2.6 Sound Control Door Assembly
An assembly consisting of a door, frame, hardware, threshold, and gasketing, capable of reducing the transmission of sound.

2 Gauge vs. Thickness
While the term ‘gauge’ is no longer common for defining material thickness it is still used to specify doors and frames for ordering purposes. The term ‘thickness’ is used when defining the actual dimension of an item, and the term ‘gauge’ is used in the context of specifying a particular door or frame.

3 Testing

3.1 Test Specimen
Unless otherwise specified, the test specimen shall be a nominal 36” (914 mm) wide, by 84” (2133 mm) high for single doors and 72” (1,829 mm wide, by 84” (2133 mm) high for pairs of doors. All doors shall be 1 3/4” (44 mm) in thickness. All doors shall be fully operable. A detailed description of the test assembly shall be included in the test report.

Ratings derived from non-operable assemblies shall only be used for experimental purposes and are not part of this document.

3.2 Test Method
The door assemblies shall be tested in accordance with ASTM E 90. The STC and OITC ratings shall be calculated in accordance with ASTM E 413 and E 1332, respectively. The latest editions of the standards shall be used in determining the STC and OITC ratings. Testing shall be performed at laboratories that are accredited under the National Voluntary Laboratory Accreditation Program (NVLAP)

3.3 Test Results and Report
The test report shall be prepared by the test laboratory and shall contain the information identified in Section 13 of ASTM E 90 or Section 8 of ASTM E 1425.
4 Design Criteria

4.1 Performance Considerations

The proper function of acoustical doors relies on a combination of factors that are under the control of various firms, trades, specifiers, suppliers, and designers. Without the cooperation of all concerned, the installed opening may not function as intended. Proper seal installation and adjustment are critical to the performance of the opening. The installation guidelines shall be provided by the manufacturer.

Consideration must be given to correctly specifying the door capability for the project condition. Some doors, although rated higher in overall STC or OITC ratings may not perform as well as lower rated doors at certain frequencies. The test reports should be reviewed to establish the best TL values at the frequencies under consideration for a given project.

Room design should create a full enclosure equal to or greater than the door's TL capabilities. For example, walls that do not run full height to a similar rated overhead structure will allow sound leakage through ceilings, louvers, pipe chases, access doors, etc.

Carpeting, although considered a good source of sound absorption, should not be used underneath acoustical doors. Door bottom gaskets must compress against a solid object to affect a proper seal. Carpeting by its nature does not provide that type of surface.

Walls, in addition to their STC rating, should be designed to support the additional weight of acoustical doors. A wall that moves or flexes each time the door is operated cannot ensure that the gasket alignment will be maintained.

The manufacturer's literature should be consulted to determine the weight of acoustical doors; especially, those that have higher acoustical ratings.

4.2 Field Testing

Results obtained from field-testing may vary from those obtained under laboratory conditions. Atmospheric conditions, room volumes, wall type and design, sound diffusion, test equipment, etc. may affect the results obtained when testing in the field.

4.3 Hardware Considerations

Hardware should be specified giving special consideration to the fact that it will be used on acoustical doors. Any type of hardware that may be the source of sound leakage should be avoided. Since all acoustical doors depend on a tight perimeter seal, some types of hardware will become difficult to operate due to the compression required to seal the opening.
AVAILABLE PUBLICATIONS

Specifications

ANSI/SDI A250.6  Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames
ANSI/SDI A250.8  Specifications for Standard Steel Doors and Frames (SDI-100)
SDI-108  Recommended Selection & Usage Guide for Standard Steel Doors
SDI-118  Basic Fire Door, Fire Door Frame, Transom/Sidelight Frame, and Window Frame Requirements
SDI-128  Guidelines for Acoustical Performance of Standard Steel Doors and Frames
SDI-129  Hinge and Strike Spacing
SDI-133  Guideline for Specifying Steel Doors & Frames for Blast Resistance

Test Procedures

ANSI/SDI A250.3  Test Procedure & Acceptance Criteria for Factory Applied Finish Coatings for Steel Doors and Frames
ANSI/SDI A250.4  Test Procedure & Acceptance Criteria for Physical Endurance for Steel Doors, Frames and Frame Anchors
ANSI/SDI A250.10  Test Procedure & Acceptance Criteria for Prime Painted Steel Surfaces for Steel Doors and Frames
ANSI/SDI A250.13  Testing and Rating of Severe Windstorm Resistant Components for Swinging Door Assemblies for Protection of Building Envelopes (Not applicable for FEMA 320/361 or ICC-500 Shelters)
SDI-113  Standard Practice for Determining the Steady-State Thermal Transmittance of Steel Door and Frame Assemblies
SDI-131  Accelerated Physical Endurance Test Procedure for Steel Doors

Construction Details

ANSI/SDI A250.11  Recommended Erection Instructions for Steel Frames
SDI-110  Standard Steel Doors & Frames for Modular Masonry Construction
SDI-111  Recommended Details for Standard Steel Doors, Frames, Accessories and Related Components
SDI-122  Installation Troubleshooting Guide for Standard Steel Doors & Frames

Miscellaneous Documents

SDI-112  Zinc-Coated (Galvanized/Galvannealed) Standard Steel Doors and Frames
SDI-117  Manufacturing Tolerances for Standard Steel Doors and Frames
SDI-124  Maintenance of Standard Steel Doors & Frames
SDI-127  Industry Alert Series (A-L)
SDI-130  Electronic Hinge Preparations
SDI-134  Glossary of Terms for Hollow Metal Doors and Frames
SDI-135  Guidelines to Measure for Replacement Doors in Existing Frame Openings

MEMBERS OF THE STEEL DOOR INSTITUTE

CECO
AN ASSA ABLOY DOOR GROUP COMPANY
9159 Telecom Drive
Milan, TN 38358-3425
(731) 686-8345
www.cecodoor.com

CURRIES
AN ASSA ABLOY DOOR GROUP COMPANY
1502 12th Street, P.O. Box 1648
Mason City, IA 50402-1648
(641) 423-1334
www.curries.com

DEANSTEEL MANUFACTURING CO.
931 S. Flores Street
San Antonio, TX 78204-1406
(210) 226-8271
www.deansteel.com

DCI
7980 Redwood Avenue
Fontana, CA 92336-1638
(909) 770-5700
www.doorcomponents.com

HOLLOW METAL XPRESS
602 S. 65th Avenue
Phoenix, AZ 85043
(623) 936-7000
www.HMXpress.com

MESKER DOOR, LLC
3440 Stanwood Boulevard
Huntsville, AL 35811-9021
(256) 936-6670
www.meskerdoor.com

MPI
5678 Concours Street
Ontario, CA 91764
(909) 593-2100
www.secmet.com

PIONEER INDUSTRIES, INC.
AN ASSA ABLOY DOOR GROUP COMPANY
111 Kero Road
Carlstadt, NJ 07072
(201) 933-1900
www.pioneerindustries.com

PREMIER STEEL DOORS & FRAMES
2840 Sterlington Road
Monroe, LA 71203
(318) 361-0796
www.trustpremier.com

REPUBLIC DOORS & FRAMES
155 Republic Drive
McKenzie, TN 38201-0580
(731) 352-3383
www.republicdoor.com

SMP
AN ASSA ABLOY DOOR GROUP COMPANY
5678 Concours Street
Ontario, CA 91764
(909) 593-2100
www.secmet.com

STEELCRAFT
9017 Blue Ash Road
Cincinnati, OH 45242
(513) 745-6400
www.steelcraft.com

STEEL DOOR INSTITUTE
30200 DETROIT ROAD • CLEVELAND, OHIO 44145
440.899.0010 • FAX 440.892.1404 • www.steeldoor.org